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The short time behavior of nucleation probabilities is studied by representing
nucleation as a diffusion process in a potential well with escape over a barrier. If
initially all growing nuclei start at the bottom of the well, the first nucleation
time on average is larger than the inverse nucleation frequency. Explicit expres-
sions are obtained for the short time probability of first nucleation. For very
short times these become independent of the shape of the potential well. They
agree well with numerical results from an exact enumeration scheme. For a large
number N of growing nuclei the average first nucleation time scales as 1/log N
in contrast to the long-time nucleation frequency, which scales as 1/N. For
linear potential wells closed form expressions are given for all times.

KEY WORDS: Nucleation time; activated process; first passsage time; escape
rate.

1. INTRODUCTION

For large systems in a metastable state the rate of nucleation of droplets of
the stable phase is proportional to system size, in other words the average
time of formation of the first stable nucleus in a quasi-stationary meta-
stable system may be expected to be inversely proportional to its size. At
first sight this may convey the impression that one might shorten meta-
stable lifetimes as much as one would like, just by making systems very
large, but this is certainly too simplistic. On a large lake at a temperature
slightly below freezing, a few ice crystals will be formed instantly, which
subsequently will continue growing. But if the density of these crystals is
very small it will still take a very long time for the lake to freeze over com-
pletely. In such cases the nucleation time may be defined as the average



time it takes an arbitrary site in the system to become included in one of
the growing stable regions. Quantitative descriptions of this scenario have
first been given by Kolmogorov, (1) Johnson and Mehl, (2) and Avrami. (3)

The main resulting effect is a reduction of the effective free energy barrier
for nucleation by a factor of d+1, or slightly smaller, depending on the
details of the growth dynamics, in d dimensions. Rigorous treatments of
this theory may be found, e.g., in ref. 4.

Yet, for large, but not too large systems nucleation is brought about
by the first nucleation core reaching supercritical size, which leads to a
nucleation rate that is proportional to system size. The basic condition for
this to occur is that the time needed for a supercritical nucleus to grow
throughout the system is shorter than the inverse nucleation rate. But also
in even larger systems the distribution of the first nucleation time may be of
great interest, in case this event will cause an immediate dramatic change
of the system. As an example of this, consider a condenser with plates
separated by a dielectric in a metastable phase near a metal-insulator tran-
sition. The formation of a supercritical nucleus of the metallic phase
immediately will lead to discharging of the condenser. Other examples of
such phenomena could include explosive chemical reactions starting after
the nucleation event (where we may generalize from nucleation resulting
from phase transformation to basically any process requiring the crossing
of some free energy barrier that is large compared to kBT).

Especially for these cases it is important to realize that mostly, due to
the initial preparation of the system, the average time to the first nucleation
in fact is longer than the inverse of the asymptotic nucleation rate. The
reason is that typically metastable states are formed by a rapid quench
from a stable state, in which no large clusters of the new stable phase
are present. The asymptotic state with a constant nucleation rate, on the
contrary requires a size distribution for the nucleating clusters assigning
non-zero probability (though small for large clusters) to clusters of any
subcritical size.

This situation may be likened to an uphill turtle race where a large
number of turtles is released at the bottom of a wide road leading up a hill,
such that each of the turtles makes an independent random walk with a
bias in the downhill direction. After a long time the turtles that have not
reached the top yet will be distributed in some characteristic way along the
slope, with most turtles near the bottom, but also some near the top, and
an arrival frequency n per turtle. The average time between subsequent
arrivals at the top will be (nn)−1, with n the number of remaining turtles.
The average time of the first turtle to reach the top, however, will be much
longer than (Nn)−1, with N the total number of turtles, due to the fact that
initially all turtles are at the bottom. Roughly one may say the first arrival
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time contains a delay contribution, which is the time needed to set up the
quasi-stationary asymptotic distribution starting from the initial state.

In this paper I will address the distribution of first nucleation times by
approximating the nucleation process as a diffusion process in an abstract
one-dimensional space, where the spatial coordinate indicates the sizes
of growing nuclei. The next section gives the exact solution for a linear
potential, corresponding to the case where the uphill road has constant
slope. Section 3 treats the case of a general monotonic potential, Section 4
compares predictions to results obtained by numerically solving the uphill
diffusion equation and the last section contains some concluding remarks.

2. EXACT SOLUTION FOR LINEAR POTENTIALS

Mean first passage times have been studied for a long time for diffu-
sion in a potential well with the possibility of escape over a potential
barrier. (5) In one dimension explicit expressions are known. For long times
the probability of survival in the well without reaching the barrier
approaches the exponential form

S long(t)=exp[− nlong(t − tD)], (1)

corresponding to an escape rate nlong. The delay time tD will depend on the
initial distribution of the diffusor, but typically be much shorter than the
average escape time 1/nlong. The probability distribution of survival in the
well for a diffusor starting at some well-defined initial position has been
studied much less. Yet the properties of this distribution, especially for a
starting point at the bottom of the well are of great interest in many prac-
tical situations. We may use again our analogy of the turtle race from the
bottom to the top of the hill. If we have N independent turtles, all starting
from the same initial distribution, the probability distribution for the time
of first passage of the top by any of them is related to the single-turtle
survival probability as

Parr(N, t)=−
d
dt

S(t)N. (2)

If S(t) were exponential for all times the distribution of first arrivals would
be exponential likewise, with a maximum at t=0 and an average first
arrival time inversely proportional to N. For very short times or very large
N this clearly is unrealistic; it ignores the fact that all turtles start at the
bottom of the hill and therefore will require some minimal time before they
can arrive at the top at all. Obviously for short times the distribution of
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first arrivals has to be quite different from exponential. Van Kampen (6) has
considered the case where the turtles start somewhere on the middle of the
slope and describes the motion by a one dimensional diffusion equation of
the form

“r(x, t)
“t

=
“

“x
3D 5“r(x, t)

“x
+

“bf(x)
“x

r(x, t)64 . (3)

Here the diffusion constant D is assumed constant2, f(x) describes the

2 If D depends on x the equation may be transformed to a diffusion equation with constant D
by replacing x by y satisfying dy

dx=( D
D(x))

1/2. The potential has to be adjusted accordingly.

external potential representing the hill, and b=1/(kBT), with T tempera-
ture and kB Boltzmann’s constant. Van Kampen then shows very elegantly
that the distribution function for first arrival at L, starting from x, for very
short times is given by

Psh(x, L, t)=
L − x

`4p Dt3
exp −1 (L − x)2

4 Dt
+

b(f(L) − f(x))
2

2 . (4)

However, his result is restricted to really short times and it cannot be
applied right away to the case where one starts from the origin, with a
reflecting boundary imposed there.

Here I will extend his results so as to remove these limitations. The
case of a strictly linear potential is solved exactly in the present section, and
in the next section short time approximations are obtained for a potential
hill of general shape. In Section 4 a comparison is made to numerical solu-
tions of the diffusion equation and it is confirmed that the approximations
made in Section 3 are asymptotically correct for short enough times. The
average time of first arrival with N turtles starting from the origin is found
to decrease as 1/log N for large N.

To study the escape process in a potential f(x) one may start by con-
sidering a continuous time random walk (CTRW) on a discrete set of
points 1, 2,..., L located at positions xn=n Dx, with jump rates C± (xn) for
jumps to the right and to the left respectively, defined through

C± (x)=
C exp[E± (x)]

exp[E+(x)]+exp[E− (x)]
, (5)

with

E± (x)=
− b(f(x ± Dx) − f(x))

2
. (6)
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In a linear potential E is a constant and the forward and backward jump
rates C+ respectively C− are constants as well. As a consequence, for each
CTRW realization bringing a walker in n steps from position x to L the
weight equals the weight of the same realization in a symmetric CTRW
with the same total jump rate C, times exp[− b(f(L) − f(x))/2]/coshn E.
Now consider the continuum limit where Dx Q 0 and the jump frequency C

is related to the diffusion coefficient through

C(Dx)2/2=D. (7)

In this limit we may identify n with Ct, and the denominator coshn E

becomes exp n0t, where I introduced

n0 — 1
4 (bfŒ)2 D. (8)

The prime denotes the derivative with respect to x.
Consider again the probability density for first arrival at L for a dif-

fusor starting at x, well to the right of the origin (so for short times paths
involving reflection at the origin may be ignored). The method of images,
combined with the observations made above, allow one to write this as

P1(x, L, t)=
L − x

`4p Dt3
e−b(f(L) − f(x))

2 e−(L − x)2

4 Dt e−n0t (9)

This is a well-known result, see, e.g., ref. 7. It confirms Van Kampen’s
short time behavior, but there is an additional damping factor which
becomes important at slightly longer times.

For the linear potential the first arrival time distribution for escape at
x=L with a reflecting boundary at x=0 has been calculated by Koplik
et al. (8) A more pedagogical discussion of this calculation may be found in
chapter 2 of ref. 9. Here I will use a different derivation, which is mathe-
matically somewhat more involved, but seems more suitable for devising
both simple and accurate approximations for more general potentials. For
obtaining the first arrival time distribution with the boundary conditions
described above we can use the following well-known observation: in
general escape will take place after an arbitrary number of returns to the
origin, followed by a path that does not return to the origin anymore and
ends up at x=L. Mathematically the function describing the joint proba-
bility distribution for all these events may be obtained as the convolution
of the probability density R(t) of return at the origin at time t (keeping
account of the discreteness of the lattice), with the probability density
Pabs(Dx, L, t) for first arrival at L starting from site 1, with an absorbing
boundary condition at the origin. The inclusion of Dx here prevents
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Pabs(Dx, L, t) from being identically zero. Since the discreteness of the
lattice also was accounted for consistently in R(t), all important results will
turn out independent of the precise value of Dx. Calculating the function
Pabs(Dx, L, t) may also be done by relating the CTRW in a linear potential
to the symmetric CTRW. The method of images, now applied both at x=0
and x=L, yields

Pabs(Dx, L, t)=4 Dx e−b Df

2 e−n0t “

“t
e− L2

4 Dt

`4p Dt
, (10)

with Df=f(L) − f(0). The effects of images resulting from repeated
reflections were neglected, as these effects are exponentially small in the
parameter n0L2/D, which should be ± 1.

By integrating this equation over time and using the definition of n0

one recovers the well-known result (9) that the total probability for a walk
starting from n=1 to escape before returning to the origin is given by

Pabs=bfŒe−b Df. (11)

From this one immediately recognizes the Arrhenius behavior of nlong,
introduced in ref. 1.

For calculating the time dependent probability density for return to
the origin of a walk starting at site 1 one may consider a CTRW on a semi-
infinite chain in a linear potential,3 but now with transitions from site 0 to

3 In principle one should introduce an absorbing boudary condition at x=L, but for short
times this makes hardly any difference because the probability of absorption is minute.

the left forbidden (implying that the total jump rate from site 0 is reduced
to C+). Let X(t) denote the probability density for a first return at time t to
an initial site different from the origin, with the additional condition that
this return is from the right. One easily shows (10) that its Laplace transform
satisfies the equation

X̃(z)=
C+C−

(C+z)2 (1 − X̃(z))
(12)

with the solution

X̃(z)=
z+C − `z2+2Cz+C2E2

2(z+C)
, (13)
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where Eq. (5) was used. The Laplace transform for the distribution of
return times at the origin now is obtained by summing a geometric series
over n returns as

R̃(z)=51 −
1

(z+C+)
(z+C)X̃(z)6

−1

=
z+C+

z
2+C+ − C− +1

2 `z2+2Cz+E2C2
. (14)

Next, note that, for fixed D, C scales as 1/E2 as E Q 0. Therefore, dividing both
the numerator and the denominator of the expression above by C, keeping
the dominant terms in E and using Eqs. (5), (6), and (8), we end up with

R̃ lin(z)=
1

E 1= z
nsh

+1 − 12
, (15)

where the superscript lin was introduced to make clear that Eq. (15)
denotes the solution for a linear potential. In the present case nsh is identi-
cal to n0. An inverse Laplace transform yields

R lin(t)=
bfŒC Dx

4
11+

e−nsht

`pnsht
+erf `nsht2 , (16)

with erf(x)= 2
`p

>x
0 dy exp(−y2). Now the first arrival distribution may be

obtained from

Parr(t)=F
t

0
dy R(y) Pabs(Dx, L, t − y) (17)

For the linear potential all integrations may be done in closed form with
the result (11)

Parr(t)=e−b Df 3e −( L

`4 Dt
−`nsht)2

`p Dt
1bfŒD+

L
t
2+2nsh

51−erf 1 L

`4 Dt
−`nsht2.64

(18)

For very short times this agrees with Van Kampen’s expression, Eq. (4).

3. GENERAL POTENTIALS

For potential hills of general shape Eq. (17) of course remains valid,
but we do not have explicit solutions any more. To assess the short time

The Uphill Turtle Race 1403



behavior of the first arrival distribution we need short time approximations
for the return time distribution R(t) and the first arrival distribution with
absorbing boundary conditions Pabs(Dx, L, t).

Let us restrict ourselves to cases in which the hill is high, i.e.
b Df ± 1, the bottom of the hill is at the origin and the top at x=L, there
are no intermediate maxima and minima at almost the same height as the
top or bottom, and the shape of the hill near bottom and top is smooth
over length scales on which the potential variations are of order kBT.
Under these conditions there are three well-separated time scales. A short
timescale is given by tsh=L2

0/D, with L0 a characteristic distance from the
origin where the potential has increased by an amount of order kBT. On
this time scale an initial distribution localized near the origin approaches
an equilibrium-like distribution over a potential range of a few kBT around
the origin. This is the range within which the major part of all turtles will
be found at any time. An intermediate time tmed, is set by the average time a
turtle needs to get from bottom to top, in case it does not return to the
bottom. This is the time scale required to establish the full metastable dis-
tribution. The longest time scale is tesc=n−1

esc , the average escape time or
arrival time. For the linear potential one may choose

tsh=(4n0)−1=1/((bfŒ)2 D)=L2/((b Df)2 D),

tmed=L2/(b Df D),

tesc=tsh exp(b Df). (19)

Under the given assumptions indeed all three scales are well separated,
though the separation between tsh and tmed is much smaller than that
between tmed and tesc.

Now one may formulate short time approximations for more general
hill shapes. Assign to each random walk realization the Hamiltonian

H({xi})=C
i

3f(xi+1) − f(xi)
2

+
1
b

log 1exp[E+(xi)]+exp[E− (xi)]
2

24 , (20)

with i running over all steps of the walk and xi the position before the
i+1th step. The probability for moving from x0 to xt in a time t under
specific boundary conditions BC then may be obtained as

P(x0, xt | BC)=Oe−bHPx0, xt, BC P0(x0, xt | BC), (21)

with P0(x0, xt | BC) the corresponding probability for the unbiased random
walk. The average O P runs over all unbiased continuous time random
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walks, properly weighted, starting at x0, ending at xt and satisfying the
required boundary conditions. For short times this average may be replaced
by the Rosenstock approximation (12)

P(x0, xt | BC)=e−bOHPx0, xt, BCP0(x0, xt | BC). (22)

In the continuum limit this reduces to

P(x0, xt | BC)=exp −
b(f(xt) − f(x0))+O(bfŒ)2/2+bfœPDt

2
P0(x0, xt | BC),

(23)

where the subscripts on the random walk average were omitted. Equation
(23) is especially useful as an approximation for Pabs(Dx, L, t). For short
times, unbiased walks from Dx to L with absorbing boundary conditions at
the origin and at x=L, on average spend equal time in equal intervals,
except for very small neighborhoods of the end points. There the average
time spent is smaller due to the absorbing boundaries. Therefore the
average O

(bfŒ)2

4 +bfœ

2 P may be replaced by a spatial average over the interval
(0, L) and one obtains the approximation

P sh
abs(Dx, L, t)=4 Dx e−b Df

2 e−nabst “

“t
e− L2

4 Dt

`4p Dt
, (24)

with nabs the spatial average of ((bfŒ)2

4 +bfœ

2 ) D.
For the return probability to the origin the approximation (23) in

principle could be used as well, but in this case it gives rise to somewhat
cumbersome integrals involving error functions. And in fact we don’t really
need this: for short times in typical cases the diffusion effectively takes
place near the origin in either a linear or a quadratic potential, so one may
approximate the return probability by the explicit expressions for these
potentials. In the case of a linear potential this becomes Eq. (16), with

nsh=
(bfŒ(0))2

4
, (25)

and fŒ replaced by fŒ(0) likewise. For potentials that are quadratic near the
origin the return probability may be obtained from the Green function
G(x, x0, t) for diffusion in a quadratic well (13) as

Rqu(t)=C Dx G(0, 0, t)

=
C Dx o(0)

2 `(1 − exp[− 2bfœ(0) Dt])
, (26)
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with o(x) defined as4 o(x)=`(2b |fœ(x)|)/p. In either case the short time

4 This may be generalized to the case of a potential of form f(x)=f(0)+cxa, respectively
f(x)=f(L) − c(L − x)a. In this case one obtains o=(bc)−1/a C(a+1

a ).

behavior of the arrival time distribution is obtained according to Eq. (17)
as the convolution of the return probability with the arrival probability
with absorbing boundary conditions. For times ° tsh the exponential
damping factors exp − nsht and exp − nabst may be ignored and one finds
that the arrival probability asymptotically is given by the Van Kampen
expression, (4) so

P sh
arr(t)=

Le−b Df

2 e− L2

4 Dt

`p Dt3
, (27)

irrespective of the shape of the potential.
To find the average first arrival time for very large numbers of turtles,

notice that for times ° t0 the survival probability for a single turtle may
be obtained from Eqs. (17), (24), and (27) as

S(t)=1 − F
t

0
dy P sh

arr(t) % 1 − 4 = Dt
pL2 e−b Df

2 e− L2

4 Dt. (28)

The mean first arrival time for the case of N turtles may be found by
setting the term subtracted from unity equal to 1/N; for this time the
probability that no turtles have arrived yet equals (1 − 1/N)N ’ 1/e,
whereas for only slightly shorter times this probability still is almost unity
and for only slightly longer times it has almost decayed to zero. This leads
to

t̄esc(N)=
L2

4D 1 log N −
b Df

2
− log 1L

4
= p

Dt̄esc(N)
22

. (29)

From this one rapidly sees that for N ± exp(b Df/2) the first arrival time
approaches zero as 1/log N. This is much slower indeed than the 1/N
behavior one would find for smaller values of N, such that typically a quasi-
stationary distribution over the full slope is reached well before the first
turtle escapes.

Equations (2), (27), and (28) may also be used to consider fluctuations
in tesc(N). One readily finds that

1 tesc(N) − t̄esc(N)
t̄esc(N)

22

’
1

log2 N
. (30)
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So the distribution of tesc(N) becomes sharp for very large N. This is in
marked contrast to the case of a Poisson distribution, where relative
fluctuations are independent of N.

4. NUMERICAL RESULTS

Numerical results were obtained by solving discrete time random
walks on a lattice of L sites, in a number of different potentials. At each
time step a fixed fraction C of the walkers are moved to their neighboring
sites, with jump probabilities satisfying Eq. (5). Walkers reaching the top of
the hill are taken out of the system. This is done most efficiently in an exact
enumeration scheme, where one starts from an initial density distribution,
typically concentrated at the origin, and evolves this distribution in discrete
time in accordance with the jump probabilities. In this way it is possible to
capture also the very small arrival probabilities at short times.

In all the calculations reported here L=10,000, C=0.04 and the
potential difference between bottom and top of the hill is Df=20kBT.
Besides the linear potential I considered four different potentials with all
possible combinations of zero and non-zero slope at x=0 respectively
x=L. Specifically, these potentials were of the forms

f(x)=Df
x
L

linear,

f(x)=Df 1 x
L
22

quadratic,

f(x)=Df 12x
L

−1 x
L
222 inverse quadratic,

f(x)=Df 14 1 x
L

−
1
2
23

+
1
2
2 cubic,

f(x)=
1
2

Df 11 − cos
px
L
2 cosine.

The cubic potential, besides having non-zero slopes at the end also goes
through a point of zero slope in the middle. Altogether this choice of
potentials provides a check on the accuracy of the short-time approxima-
tions developed in the preceding section, under a large variety of condi-
tions. Figure 1 shows a comparison of the first arrival probabilities result-
ing from the exact enumeration scheme to the predictions of Eq. (17),
combined with (24) and (16) or (26). The linear potential, for which we
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1.05

1

0.95

Fig. 1. The time dependence of the arrival probability is compared to the theoretical predic-
tions for short times. For five different shapes of the potential hill the ratio of the numerical
solution of the diffusion equation to the theoretical expression is plotted as function of Dt/L2.
The exact enumeration results for the linear potential (diamonds) are compared to the exact
solution, Eq. (18) and those for the quadratic (crosses), the inverse qudratic (squares), the
cubic (pluses) and the cosine (triangles) potential to the numerical solution of Eqs. (17)
together with (24) and (16) or (26).

have the exact result (18), provides a check on the accuracy of the
discretized dynamics as an approximation for the diffusion equation.5

5 Here one should keep in mind that in actual applications often the diffusion equation is
obtained as a continuum approximation for dynamics that are in reality discrete in the
spatial coordinates.

Figure 1 shows for the linear potential the ratio of the exact enumeration
results to those of Eq. (18), as function of the dimensionless time
y — Cn/2L2, with n the discrete time in the enumeration scheme. On this
scale the relaxation time n−1

sh corresponds to y=0.01. One sees that the
discretization effects remain limited to less than 2.5%, on the shortest time
scales yielding an arrival probability different from zero within the compu-
ter accuracy. They decay to less than 1% for larger y. Instead of Eq. (18)
one may also use (17), combined with (24) and (16). This everywhere yields
slightly larger values, but the difference never exceeds 0.4%. For all the
other potentials the results for times up to tbr, with tbr=min(n−1

sh , n−1
abs),

remain within a deviation of 3% of the analytic approximation. The largest
deviations over the full time ranged considered occur for the cubic potential,
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which indeed of all potentials considered has the shortest tbr (namely
tbr=0.0011 · · · ). Part of the deviations always are due to discretization
errors, as seen already for the linear potential. But given that the numbers
divided upon each other to obtain these curves, easily vary over more than
a hundred orders of magnitude within the time range considered, errors of
a few percent may be considered quite a good result. It should be noted
that, in order to have this good agreement over the time range considered,
inclusion of the damping term exp(−nabst) in ref. 24, with the value of nabs

as specified below this equation, is crucial.

5. DISCUSSION

In this paper I obtained the short time behavior of the first arrival
probability at the top of a potential hill for a diffusion process or random
walk starting at the bottom. It is strongly suppressed during an initial time
interval on the order of the diffusion time from bottom to top in the
absence of a potential. In the continuum diffusion description it never
becomes strictly zero for positive times, but it approaches zero extremely
rapidly as time goes to zero. The arrival probability for very short times
becomes fully independent of the shape of the potential, but the time range
over which this holds becomes shorter as the potential gets higher and
steeper near the origin.

For slightly longer times the inclusion of exponential damping factors
in the expressions for the first arrival probability does become important.
E.g. ignoring the second derivative term in the expression for nabs below
Eq. (24) leads to a deviation of roughly 20% at y=0.01 for the quadratic
and the inverse quadratic potential, whereas the deviations with the full
expression are only about 1%.

It is obvious that the delay time tD introduced in Eq. (1) has to be of
the order tmed, so the factor exp(nlongtD) is very close to unity. Explicit
expressions for tD may be obtained from the projection of the initial dis-
tribution on the most slowly decaying eigenfunction of the diffusion equa-
tion (3) with escape at x=L. Most notable is that tD in essence is inde-
pendent of the precise form of the initial distribution, as long as this
remains localized within a region of width L0 around the origin, where the
value of the potential remains less than a few kBT above that in the origin.

The average first arrival time for a very large number of independent
random walkers, all starting at or near the bottom, does not scale as the
inverse of the number of walkers N, as one might expect on the basis of
Poisson statistics, but rather as 1/log N. This may have important conse-
quences in large metastable systems, in which the first nucleation of a
stable droplet has an immediate large effect on the whole system.

The Uphill Turtle Race 1409



It is an interesting question how accurately such systems may be
described by a simple model of noninteracting random walks in one
dimension. A priori it is not clear that the nucleating droplets are charac-
terized sufficiently by a single parameter giving their size, ignoring all
details about their shapes. Interactions between droplets may play a role,
especially when their density becomes larger. And, especially in the pres-
ence of conservation laws there may be memory effects that make a simple
random walk picture inadequate. Presently these questions are under
investigation both numerically and analytically and we expect to report on
them soon. (14)
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